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Synthetic observations from simulations fill in our gaps in understanding
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Synthetic observations from simulations fill in our gaps in understanding
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Synthetic observations from simulations fill in our gaps in understanding

Si Il Density

o .}

—
=
9
it
- -]
v
—
=
a
=
48]
s
=
z




Synthetic observations from simulations fill in our gaps in understanding

Si Il Density

::1 }

—
=
9
it
- -]
%)
—
=
a
=
48]
s
=
z

Normalized Flux

Observed Wavelength (Angstroms)

yt 3.0 released (http://yt-project.org)

HST Theory Proposal (Pl Peeples) AR-13919
MISTY - Mast Interface to Synthetic Telescopes with yt
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Synthetic observations from simulations fill in our gaps in understanding
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Synthetic observations from simulations fill in our gaps in understanding
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Hummels+ 2013
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Synthetic spectra can be used to directly
compare simulations to CGM observations.

Different feedback models produce
different CGM profiles
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The pressure support of cold CGM absorbers




The pressure support of cold CGM absorbers
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Electron Density (cm )

The pressure support of cold CGM absorbers
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The pressure support of cold CGM absorbers

Density

Simulated Cold Gas

Simulations agree with analytic model and
do not reproduce observations |
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The pressure support of cold CGM absorbers

Alternative Explanations:

* Something wrong in analysis of observational data

e Cold and hot gas not in pressure equilibrium (transient feature)
e Cold and hot gas not co-located

* Pressure equilibrium between two gas phases but no hot halo
* Additional pressure support (B-fields, turbulence)

HST Theory Proposal (Pl Hummels) AR-13917



The metallicity bimodality of Lyman Limit Systems
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The metallicity bimodality of Lyman Limit Systems
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The metallicity bimodality of Lyman Limit Systems
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The metallicity bimodality of Lyman Limit Systems
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The metallicity bimodality of Lyman Limit Systems
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Simulation B Inflow
B Outflow

Poor resolution
blends metal-rich
and metal-poor
gas; brings true
peaks together

Hummels+ in prep



The metallicity bimodality of Lyman Limit Systems

Preliminary results suggest simulations
reproduce metallicity bimodality
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HST Theory Proposal (Pl Hummels) AR-13917



Conclusions

* Synthetic spectra can be used to directly compare
simulations to CGM observations

* Different feedback models predict different CGM
distributions

* Simulations do not reproduce observations of cold
CGM volume density (Werk+ 2014 result)

* Simulations reproduce metallicity bimodality of LLSs
(Lehner+ 2013 result)





