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® Motivation: neutrinos and the cosmos
(I) ® Neutrinos in hot and dense media

® Structure of QKEs from quantum field theory

® Anatomy of the QKEs

® Coherent evolution: flavor and spin
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® |nelastic collisions

® Comparison to other approaches & future challenges

Talk by A.Vlasenko

® Neutrino-antineutrino transformation in astrophysical
environments



Neutrinos

® F[lusive particles: lightest fermions, feel only the “weak” force
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Despite elusive nature, V’s play a key role in cosmology / astrophysics



Neutrinos and the Cosmos ()

|. What is the spectrum and flavor content of V’s when they decouple
in the Early Universe! Far reaching implications for energy density,

and n/p ratio — Big Bang Nucleosynthesis
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Neutrinos and the Cosmos ()

|. What is the spectrum and flavor content of V’s when they decouple
in the Early Universe! Far reaching implications for energy density,

and n/p ratio = Big Bang Nucleosynthesis
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Neutrinos and the Cosmos (2)

Neutrinosphere

2. What is the impact of inelastic
collisions on V propagation in
the SN envelope! Implications
for SN V signal, nucleosynthesis
in the neutrino-heated ejecta

Inelastic
scattering
center

Cherry-Carlson-Friedland-Fuller-Vlasenko 2012
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The need for QKEs

To fully address the issues described above,
must set up the analytic and computational tools needed to
describe neutrino kinetics in the EU and SN environments,
simultaneously keeping track of the key quantum
mechanical effect of coherent flavor oscillations AND de-
cohering inelastic collisions with the medium



Neutrinos in hot / dense medium

® At a given time, ensemble of neutrinos described by incoherent
mixture of states |k> with weight px (2 px= 1)

® Physics controlled by density matrix

Example: in thermal equilibrium = peq =



Neutrinos in hot / dense medium

® At a given time, ensemble of neutrinos described by incoherent
mixture of states |k> with weight px (2 px= 1)

® Physics controlled by density matrix

dp
= — [H.
i~y = 1, )
® Ensemble average of any operator:
4 )
0) =3 pi(klOIK) = Tx(pO)

- J




Neutrinos in hot / dense medium

® At a given time, ensemble of neutrinos described by incoherent
mixture of states |k> with weight px (2 px= 1)

® Physics controlled by density matrix

® |n EU and SN we need densities and fluxes of v, &(=¢,l4,T,.X =

generalized number operator
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® |-particle states associated with massive spin-1/2 field

v 0) =)o) 155 1) =P
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creation operator for particle / antiparticle labeled by
3-momentum P, mass m;, helicity h=L,R

® Dirac 2 4 states: L- and R-handed neutrino and antineutrino

® Majorana — 2 states: L- and R-handed neutrino (Y=Y< = a; = b))



® Key dynamical objects are the “matrices of densities”

i= 1,23, .. hh» =L R
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® Key dynamical objects are the “matrices of densities”
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® Key dynamical objects are the “matrices of densities”

i=1,23,.. hh’ = L,R
4 T |
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® Physical content:

;zzh (13) Represents occupation number of neutrinos of mass m;, helicity h, momentum p



® Key dynamical objects are the “matrices of densities”
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® Key dynamical objects are the “matrices of densities”

i= 1,23, .. hh» =L R
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® Key dynamical objects are the “matrices of densities”

i=1,23,.. hh’ = L,R
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® 2nfX 2nf matrix structure: Dirac case, need F and F
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® Key dynamical objects are the “matrices of densities”
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® Key dynamical objects are the “matrices of densities”

neutrinos

anti-
neutrinos

=123, hh' =L R
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® 2nfX 2nf matrix structure: Dirac case, need F and F

i = (242
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ns X ns blocks describing
matrix of density for active
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® Key dynamical objects are the “matrices of densities”
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® 2nfX 2nf matrix structure: Majorana case

az(ﬁah):bz(ﬁah] —> fE Jrr, f_EfRR :flgR (fb:fLR



® Key dynamical objects are the “matrices of densities”

i= 1,23, .. hh» =L R
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® Key dynamical objects are the “matrices of densities”
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® Key dynamical objects are the “matrices of densities”

neutrinos

anti-
neutrinos

® QKEs are nothing but the evolution equations for the f’s

i=1,23,.. hh’ = L,R
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® We work in the flavor basis, related to the above by:
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propagator in diagonal form
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QKEs from Quantum Field Theory

Equations of motion Kinetic equations for

for Green Functions “matrix of densities” f(x,p)

(Ve (®)75(y)) 2% (z,p) ~ (a(p,X) aa(p,\))




QKEs from Quantum Field Theory

Equations of motion Kinetic equations for
for Green Functions “matrix of densities” f(x,p)
(Ve ()75(y)) 23 (@,p) ~ (al(p,X) aa(p,A))
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QKEs from Quantum Field Theory

Equations of motion Kinetic equations for
for Green Functions “matrix of densities” f(x,p)
(Ve ()75(y)) a3 (x,p) ~ (al(p,N) aa(p, )

® Exploit hierarchy of scales. Work to 2" order in small ratios (E~T):

e )
mV/E ~ AmV/E ~ Zforward/E ~ aX/E ~ O(E) Zinelastic/E -~ O(Ez)
NI W, ) LY X y
\/ | \ N\
Small Comparable™* potential induced Slowly Weak
neutrino by forward scattering on matter varying interaction

(A)masses and other neutrinos background rates



QKEs from Quantum Field Theory

Equations of motion Kinetic equations for
for Green Functions “matrix of densities” f(x,p)
(Ve ()75(y)) a3 (x,p) ~ (al(p,N) aa(p, )

® Exploit hierarchy of scales. Work to 2" order in small ratios (E~T):

e )
mV/E ~ AmV/E ~ Zforward/E ~ aX/E ~ O(E) Zinelastic/E -~ O(Ez)
N W, ) LY X y
"/ | \ N\
Small Comparable™* potential induced Slowly Weak
neutrino by forward scattering on matter varying interaction
(A)masses and other neutrinos background rates

® The Ph)’SiCS: Losc~E/(Amv)2, mep, Lgradients >> I—deBroine



QKEs from Quantum Field Theory

Equations of motion Kinetic equations for
for Green Functions “matrix of densities” f(x,p)
(Ve ()75(y)) a3 (x,p) ~ (al(p,N) aa(p, )

® Exploit hierarchy of scales. Work to 2" order in small ratios (E~T):

e )
mV/E ~ AmV/E ~ Zforward/E ~ aX/E ~ O(E) Zinelastic/E -~ O(Ez)
N W, ) LY X y
"/ | \ N\
Small Comparable™* potential induced Slowly Weak
neutrino by forward scattering on matter varying interaction
(A)masses and other neutrinos background rates

® |nitial density matrix of the system [recall <O> =Tr (pO)] —
initial (or boundary) conditions for the QKEs



QKEs from Quantum Field Theory

Equations of motion Kinetic equations for
for Green Functions “matrix of densities” f(x,p)
(Ve ()75(y)) 23 (x,p) ~ (al(p.N) aa(p,))

® Advantages of this approach (used already in other contexts, such as
baryogenesis in the Early Universe):

® First principles method, forced us to think about L-R coherence

® No guesses or fudging: diagrammatic computations in non-eq
QFT determine all terms of the QKEs

® Systematic approximations (based on power counting in €s)
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Structure of the QKEs
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Structure of the QKEs

e~(fe )| DR —(H.F}+iC
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Structure of the QKEs
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Structure of the QKEs

F

(1) 4DF ={H, F}+iC
P=(fn )| iDF =[H,F] +iC

v . <

4 N - R
Derivative along v Coherent evolution:
world line: vacuum mass &
\dl"lft & force termj forwar:d scatterir.]g “Boltzmann”
“Vlasov” (refractive potential)
“MSW”

e FEH,C: 2nfx 2nf matrices, all components coupled in general

e D, H,C are functionals of F F: non-linear system



Structure of the QKEs
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Current state-of-the art:
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® FEarly Universe: approximate treatment of inelastic collisions,
inadequate in decoupling regime

® Supernovae:

® no simultaneous treatment of forward AND inelastic
collisions (separation of low- and high-density regimes)

® no inclusion of spin degrees of freedom (ns x ns problem)



Backup



Green’s function approach

® Dynamics contained in the two-point function

G (1) = 5[V (z +7/2), 7 (x —/2)])

Wigner transform

G (z,p) = / dr " G (z, 1)



Take spinor projections (vector, tensor)

Fr r

Collet into 2ns X 2ns matrix F = (
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