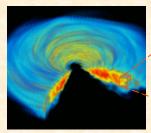
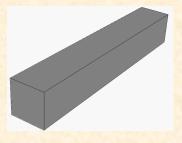

MHD accretion flows

Jim Stone, Yanfei Jiang, Matt Kunz (*Princeton University*)
Shane Davis (*CITA*)
Xuening Bai (*Harvard University*)

Studies of accretion disks in:




AGN

Protostars

MRI Turbulence

Weakly magnetized Keplerian accretion disks are linearly unstable: *magneto-rotational instability (MRI)*

Global simulation

Local simulation

MRI saturates as MHD turbulence. Turbulence sustained with net flux.

Over last 20 years, hundreds of papers studying nonlinear regime.

Outline

- 1. Radiation-dominated disks
- 2. Planetary wakes in MRI turbulence
- 3. Effect of ambipolar diffusion (AD) on MRI
- 4. Dust dynamics in protoplanetary disks

1. Radiation Dominated Disks

(work with Yanfei Jiang and Shane Davis)

In black hole accretion disks, radiation pressure exceeds gas pressure inside

$$r/R_G < 170(L/L_{\rm Edd})^{16/21}(M/M_{\odot})^{2/21}$$

(Shakura & Sunyaev 1973). Radiation needs to be included in dynamical models.

If stress $\tau_{r\phi} = \alpha P$ then radiation dominated disks are subject to both

- Viscous instability (Lightman & Eardley 1974)
- Thermal instability (Shakura & Sunyaev 1976)

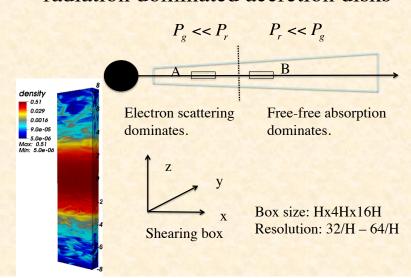
Still not clear if such instabilities really exist with MRI.

Method: Equations of radiation MHD

Euler equations + Maxwell's equations + zeroth and first moment equations.

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + P + B^2/2 - \mathbf{B} \mathbf{B}) &= -\mathbb{P} \mathbf{S}_{\mathbf{M}} \\ \frac{\partial E}{\partial t} + \nabla \cdot [(E + P) \mathbf{v} + (B^2/2) \mathbf{v} - \mathbf{B} (\mathbf{B} \cdot \mathbf{v})] &= -\mathbb{P} \mathbb{C} S_E \\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0 \\ \frac{\partial E_r}{\partial t} + \mathbb{C} \nabla \cdot \mathbf{F}_r &= \mathbb{C} S_E \\ \frac{\partial \mathbf{F}_r}{\partial t} + \mathbb{C} \nabla \cdot \mathbf{P}_r &= \mathbb{C} \mathbf{S}_{\mathbf{M}} \end{split}$$

E_r, F_r, P_r are radiation energy density, flux, pressure in Eulerian (fixed) frame.


Source terms are O(v/c) expansion of material-radiation interaction terms in fluid frame.

Lowrie et al 1999

$$\mathbf{S}_{\mathbf{M}} = -(\sigma_a + \sigma_s) \left(\mathbf{F}_r - \frac{\mathbf{v} E_r + \mathbf{v} \cdot \mathbf{P}_r}{\mathbb{C}} \right) + \frac{\mathbf{v}}{\mathbb{C}} (\sigma_a T^4 - \sigma_a E_r)$$

$$S_E = (\sigma_a T^4 - \sigma_a E_r) + (\sigma_a - \sigma_s) \frac{\mathbf{v}}{\mathbb{C}} \cdot \left(\mathbf{F}_r - \frac{\mathbf{v} E_r + \mathbf{v} \cdot \mathbf{P}_r}{\mathbb{C}} \right)$$

Local shearing-box simulations of radiation dominated accretion disks

Towards Better Numerical Methods

The three challenges of numerical radiation MHD:

- Need closure relation **P**=**f**E
 - Compute variable Eddington tensor (VET) from formal solution of time-independent transfer equation.
- Source terms can be very stiff
 - Use modified Godunov method
- Wide range of timescales associated with v, C_s, c
 - Requires fully implicit (backward Euler) differencing of radiation moment equations

Each of these three ingredients are implemented as a radiation module in the Athena MHD code. Davis, Stone, & Jiang 2012

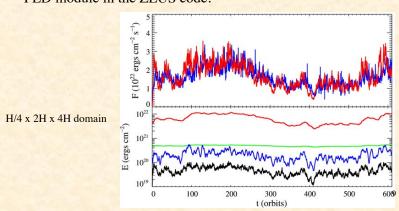
Jiang, Stone, & Davis 2012

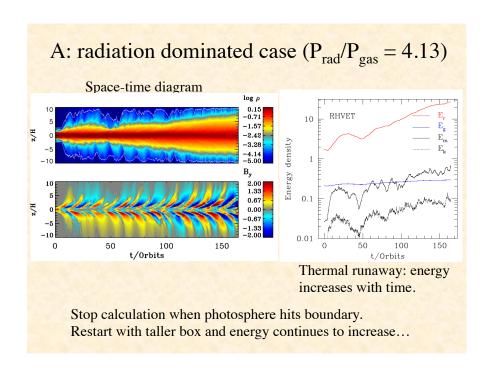
Parameters

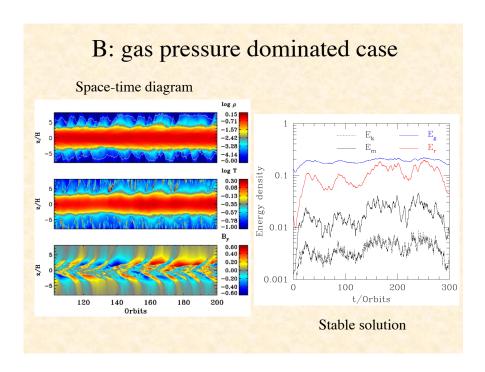
Radiation pressure dominated regime

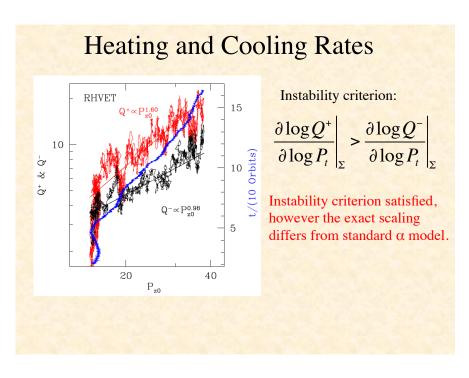
Table 1:: Location A		
Parameters	Value	Comment
M	$6.62 M_{\odot}$	Mass of Central Black Hole
r	$30 (GM/c^2)$	Radius
$ ho_0$	$5.66 \times 10^{-2} \; \mathrm{g \; cm^{-3}}$	Initial Mid-plane density
T_0	$2.45 \times 10^7 \text{ K}$	Initial Mid-plane temperature
au	3.514×10^{4}	Total Electron Scattering Optical Depth

Gas pressure dominated regime


Table 2:: Location B

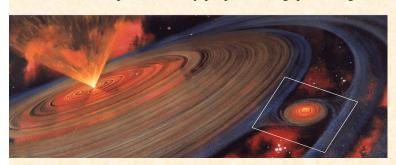

Parameters	Value	Comment
M	$6.62 M_{\odot}$	Mass of Central Black Hole
r	$300 (GM/c^2)$	Radius
$ ho_0$	$1.12 \times 10^{-2} \mathrm{\ g\ cm^{-3}}$	Initial Mid-plane density
T_0	$2.89 \times 10^6 \text{ K}$	Initial Mid-plane temperature
au	1.06×10^{4}	Total Electron Scattering Optical Depth


Previous results using FLD


Same setup and parameters as Hirose et al. (2006; 2009), except we use a *much larger computational domain*.

They found radiation pressure dominated disks are stable in using FLD module in the ZEUS code.

Lower surface density ($P_{rad}/P_{gas}=206$) Space-time diagram Space-time diagram $P_{rad}/P_{gas}=206$ Space-time diagram $P_{rad}/P_{gas}=206$ Calculation with VET: Thermal runaway; disk collapses Calculation with FLD in Athena: Thermal runaway; disk collapses

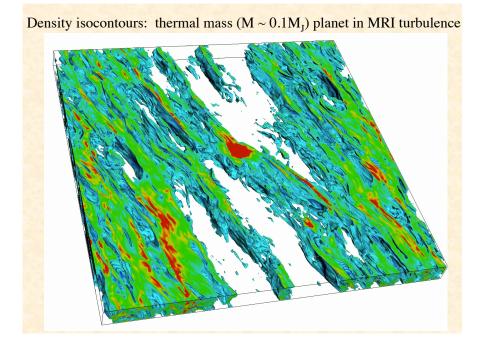

Must stop both calculations when disk is too thin to be resolved.

2. Planet wakes in MHD turbulence.

(work with Zhaohuan Zhu)

Interaction between planet and disk launches density waves, opens a gap. Torque from gas can make planet migrate in disk.

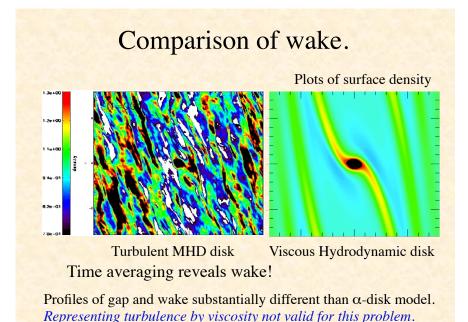
Simulations required to study properties of gap and migration.



Local shearing box simulations of planet in disk.

Summary

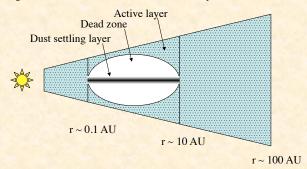
1. Radiation-dominated disks


Strongly radiation-dominated disks are thermally unstable

Comparison of wake. Plots of surface density 1,7e+00 1,7e+00 Turbulent MHD disk Viscous hydrodynamic disk Same α as MHD

Summary

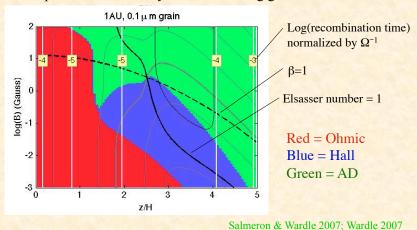
- 1. Radiation-dominated disks
 Strongly radiation-dominated disks are thermally unstable
- 2. Planetary wakes in MRI turbulence
 Cannot represent all effects of turbulence as diffusivity.

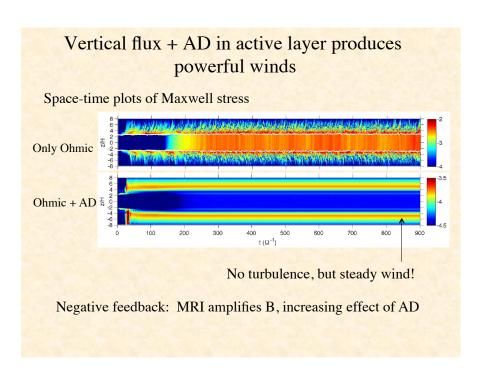

3. Effect of AD on MRI

(work with Xuening Bai)

It seems likely PPDs will have a layered structure: Gammie 1996

- 1. Inner region: well ionized and turbulent.
- Glassgold et al. 1997

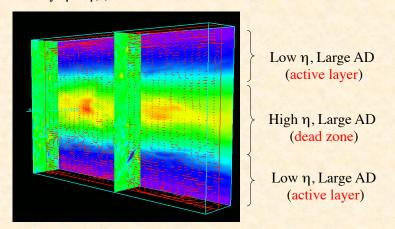

- 2. Central region:
 - turbulent active layers, MRI controlled by non-ideal MHD.
 - laminar dead zone.
- 3. Outer region: turbulent, with MRI controlled by AD.



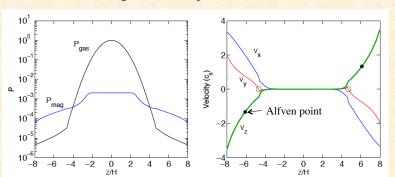
Which terms dominate in a proto-stellar disk?

Must adopt a disk model:

- Minimum-mass solar nebula, $\Sigma = \Sigma_0 r^{-3/2}$, with $\Sigma_0 = 1700 \text{ g/cm}^2$
- Non-thermal source of ionization (e.g. X rays)
- multi-species ion chemistry model including grains.



Layered disks with AD


(Gammie 1996; Igea & Glassgold 1998)

• Studied using 3-D simulations of stratified disks with non-uniform resistivity $\eta = \eta(z)$ and AD (Bai & Stone 2013)

With AD: super-Alfvenic winds

Time-averaged, vertical profiles in wind solution

Details in remarkable agreement with steady-state wind theory.

With AD, qualitative change in solution.

Need *global* simulations with Ohmic + AD + Hall to confirm.

Summary

- 1. Radiation-dominated disks Strongly radiation-dominated disks are thermally unstable
- 2. Planetary wakes in MRI turbulence Cannot represent all effects of turbulence as diffusivity.
- 3. Effect of ambipolar diffusion (AD) on MRI AD is important for MRI in PPDs, produces wind

Particle aerodynamics Weidenschilling 1977 Cuzzi et al. 1993

Eqns. of motion for particles in disk:
$$\frac{d\mathbf{v}_i}{dt} = -\Omega_K^2\mathbf{r} + \underbrace{\frac{\mathbf{v}_g - \mathbf{v}_i}{t_s}}_{\text{gas drag}}$$

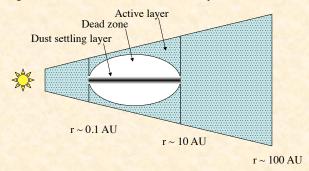
Define a dimensionless stopping time $au_s = \Omega t_s$

For small particles $a \leq \lambda_{\text{mfp}}$ drag force given by the Epstein regime:

$$\tau_s = \frac{\rho_s a \Omega_K}{\rho_g c_s} = 4.41 \times 10^{-3} \left(\frac{\rho_s}{3 \text{ g cm}^{-3}}\right) \left(\frac{a}{\text{cm}}\right) r_{\text{AU}}^{3/2}$$

Particles must be cm or larger for $\tau_s > 10^{-3}$

4. Dust Dynamics in Protoplanetary Disks


It seems likely PPDs will have a layered structure: Gammie 1996

Glassgold et al. 1997

Inner region: well ionized and turbulent.

2. Central region:

- turbulent active layers, MRI controlled by non-ideal MHD.
- laminar dead zone. Dust may settle in dead zone.
- 3. Outer region: turbulent, with MRI controlled by AD.

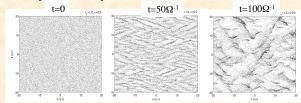
Radial drift of particles

Nakagawa, Sekiya & Hayashi 1986 (NSH)

- Gas in the disk orbits at slightly sub-Keplerian velocity due to small outward pressure gradient.
- Particles do not feel pressure, orbit at V_K

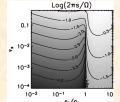
This leads to a small difference in the angular velocity of particles and gas:

and gas:
$$\Delta V_\phi = \frac{\eta V_K \tau_s^2}{(1+\epsilon)^2 + \tau_s^2}$$
 where
$$\eta \equiv -\frac{1}{2\rho_g V_K^2} \frac{\partial P}{\partial \ln r} \sim \left(\frac{c_s}{V_K}\right)^2 \qquad \epsilon \equiv \rho_d/\rho_g$$

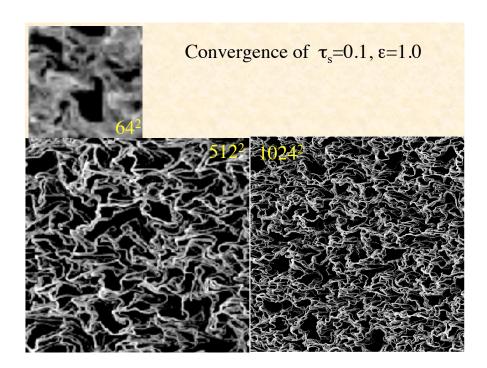

Drag between the gas and particles generates a torque which causes particles to spiral inwards, and gas to drift slowly outwards.

Radial drift speed is:
$$\Delta V_r = \frac{-2(1+\epsilon)\eta V_K \tau_s}{(1+\epsilon)^2 + \tau_s^2}$$

Lifetime of ~1 m sized particles at 1 AU is only ~200 orbits


Streaming Instability (SI)

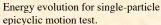
Momentum feedback *on the gas from the particles* causes a linear instability, driven by the radial drift velocity.

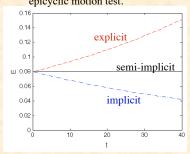


Drives clumping of particles, low Mach number turbulence in the gas. Typical length scale of instability $\sim (\eta V_K/c_s)H = 0.05H$ for MMSN

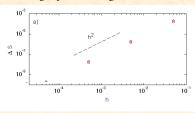
Growth rate $s \sim \Omega$; Largest for $\tau_s \sim 1$ and $\epsilon \sim 1$.

Youdin & Goodman 2005 Youdin & Johansen 2007 Johansen & Youdin 2007

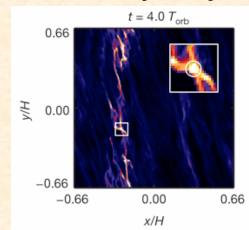

Numerical algorithms: particles. Bai & Stone 2010


Arbitrary number of super-particles, with arbitrary mass distribution.

Integrate equation of motions for particles using second-order *semi-implicit* integrator which conserves orbital energy exactly. *Fully implicit* integrator is used for particles with very short stopping time.


"Triangular-shaped cloud" (TSC) interpolation between grid and particle positions.

Fully conservative, parallelized with MPI.



Second-order convergence of errors in single-particle integration.

With self-gravity, clumps formed by SI can collapse into planetesimals

Simulation of SI+gravity by Johansen et al. 2007

BUT: how do you get to cm sized particles so SI can operate?

Summary

- 1. Radiation-dominated disks
 Strongly radiation-dominated disks are thermally unstable
- 2. Planetary wakes in MRI turbulence
 Cannot represent all effects of turbulence as diffusivity.
- 3. Effect of ambipolar diffusion (AD) on MRI AD is important for MRI in PPDs, produces wind
- 4. Particles in Disks
 Streaming Instability can produce seeds for planetesimals