Mean flux

!

Diffusive part ensuring
upwinding and code
stability



An example:

Let us consider the linearized 1D hydrodynamical equations.
U +AU_ =0,
Po

e
| |u alp, O

U, = Pr _ alK(l) + a2K<2) = q = ap, — Py, a, = ap,; + Pl
2ap, 2ap,

A=

BN [ PN 1

—d a

b

up

idem(B,R) <= (a,L)

1 1 '
. P* —(p, + Pr)——(up —u,)p,/a
U =|",|=0,K?+BK" = % 12
g E(ML-I_MR)_E(pR_IOL)a/,OO
‘IOL =1, uL =O i -

*

u

Pp =1/2,1, =0

»
»



The ROE Riemann solver (MHD solver)

3 waves linear solver for HD (Roe 1981, Toro 1999).

7/ waves linear solver for MHD (Brio & Wu 1988, Cargo & Gallice 1998,
Balsara 1998).

Complex method which requires some calculations. Only the basic ideas
presented here.

Solving the Riemann problem exactly is too difficult so one replaces the
non linear problem by a linear problem that is solved exactly.

Replace the new Jacobian, A, by a linear one which has adequate
properties.

JU+FU), =0,0U+AU_=0=9U+ AU_=0, AU, U,)

It is required to have the following properties:

Property (A): Hyperbolicity of A, implying that it has m eigenvalues and
eigenvectors. M=..=A,K,. K,

This preserves the linear wave structure of the original problem.



Property (B): AU, U) = A(U)

This is called the consistency. It implies that in the limit where the right and
left states becomes identical, the flux is exactly recovered.

Property (C): AU, U)U,-U,)=FU,)-FU,)

This is the most difficult property to satisfy.

It ensures that an isolated discontinuity which satisfies the jump relation:
by -F, =)\‘C(UR _UL)

will be adequatly described by the solver (projected in a single eigenvector

giving A_.=N\,).

Constructing a Roe matrix is not easy. Simple averaging like 0.5(A(Ug)

+A(U,)) does not verify property (C).

This can be achieved (Roe 1981) by introducing an intermediate vector Q.

U=U(Q),F =F(Q),0=+/p(Luy,w,H,B,/p,B,/p)

H-= l(E + P+ l(Bx2 +B+ BZZ))
o, 2



By doing this, it is found that U and F express as algebraic relations (product
Q,Q, or ratio Q/Q; ) involving the components of Q. But we have for

le: 0. 0)
€xampie OOz — 0.0, =AQ0,) =0,A0 -0AQ,

Thus the jump relations can be expressed by the jump relation of Q:
F,-F, =AF =CAQ, (U,-U,)=AU=BAQ

Thus, A=CB', F,-F, =AU, -U,)

And the flux is given by the formula obtained previously:

F(U(O))=%(FL+FR)+%E. (Bi—&i)f(i

i=1,m

i

To summarize, the whole algorithm is:

-compute the Roe average, involved quantities like: “’OLflL ¥ {)R a
| . By +Px

-compute the eigenvalues and eigenvectors

-compute the wave strength (a—f)

-compute the flux



Generally speaking, the Roe solver works well and gives accurate
results. It is widely used and serves as a reference.

In some rare occasions (but not so rare....), the Roe solver is
encountering severe difficulties and crashes.This is due to the
linearisation which is a poor approximation for highly non linear
discontinuities encountered in stiff problems.

The manifestation of this can be:
-intermediate states with negative energy or density
-rarefaction shocks leading to entropy violation

An entropy fix or more generally a switch is needed to cure these
events... Various possibilities have been proposed (see e.g. Toro
1999).

For example, one can switch to HLL using the largest and smallest
wave speed of Roe. This replaces the 6 intermediate Roe states by a
single star state.



Shock Jump conditions

Across a discontinuity (that is to say in any point), and in the frame
moving with it, jump conditions apply: F1 = F2

In the laboratory frame, the discontinuity is moving at some speed A.
The jump relation can then be written as:

)LcUl_Fl=)LcU2_F2

To see this, let us consider again the equation: é’tU + axF =( and a

control volume [X,Xg]. A corresponding integral form on the volume of
control is:

d px) d rxi
FU)-FU)=— | ., Utendr+— | U, n)d

dx dx x(1) X,
=—U(x(?)_,t) —-—U(x(2),,t) + J.U(x,t)dt + Jd.U(x,t)dt
UG =—-UG0),,0+ [ "UCendr+ [ a0

Thus, if X ->Xg, the integrals on the right hand side vanish and we
obtain the relation.



The H(arten)L(ax) (van)L(eer) Riemann solver
(Harten et al. 1983, Toro 1999)
2 waves solver (hydro and mhd):

one retains only the 2 fastest waves (e.g. the 2 fast magneto-accoustic

waves) and then assume that between the 2 waves, there is a uniform
state U*.

Conservation laws are then used to determine U* and the flux F *.




First step (HLL)
Let us consider a volume of control V, i.e. an area of surface S in YZ and

delimited by -L and L in X.

At time t=0, the total value of U within Vis: (Sx2L)xU,, =SxLx (U, +Uy,)

At time t, the left and the right waves have reached: X = )"L xt,X = )LR Xt

(Sx2L)x U, (1) =
Sx((L+At)xU, +(L=2A,)xU, +(=A, + A )t xU")

Thus:

But we also have: S x2L)xU,,(t)-U,,0))=(F, —F;)xt

o F -Fo+ AU AU,

Thus we obtain U*; v Ap = A,
1 M M
| | .
\ ] e
U, F U Ug, FR




Second step (HLL)
But what we want, is to determine F*, so the job is not finished yet
(F(U*) is not a good solution). Assume first that: A <0, Az>0

Let us consider a new volume of control, delimited by X=-L and X=0. Then we
have: Sx((L+A0)xU, =2, txU)=SLxU, +(F, - F')t

and thus: F =F +AU -U,)= Lt _)“LFR"' )L;L)LR(UR -U.)
R~ ‘ML

Note that this expression is symmetrical in R <=> L indicating that we could
have used X=0, X=L as volume of control and find the same resuilt.

If now we assume that: A >0, Ax>0, that is to say the left state propagates
faster than the fastest wave in the right direction, the same calculation shows
that F,,  =F,. In the same way A, <0, Azx<0 implies F;; | =Fg

AMF, -AF, + A A (U, -U,)

A <04, >0—>F, =F = Y

A >0A,>0—F,,, =F,
A <OA, <O—F,,, =F

HL R

Notethat: F, = F when A, =0



Which wave speed ?

In principle, determining the correct wave speeds would require to solve the
problem exactly first... Fortunately, good estimates can be made.

Davis (1988) propose: S, =min[A,(U,),A,(Up)]
S, =max[A (U,),A (U,)]

while Einfeldt et al. (1991) propose: S, =min[A,(U,),A,(Uy,)]
S, =max[A (U,),A (Ug,,)]

where A, and A, are respectively the smallest and largest wave speeds and A, are
the Roe wave speeds.

Positivity of the scheme

In the hydrodynamical case, the scheme ensures positivity that is to say, density
and pressure remain positive (Einfeldt et al. 1991). The common experience is that
the scheme is very robust.

However, the scheme does not resolve contact discontinuities and is therefore very
diffusive. Single-state approximation should be extended to a two or multi-state
approximation.

Note when A =\ is enforced, the scheme is called Lax-Friedrich solver.



The HLLC Riemann solver (hydro case)

3 waves solver (Toro 1999).
2 fast waves and 1 entropy wave. Thus, 2 intermediate states U, * and Uy".
First step (HLLC)

It is assumed that the normal velocity is constant over the Riemann fan, thus, the
wave velocity of the entropy wave is 2 x *

Second step (HLLC) M t K

Ay, Or equivalently, u™ has to be guessed. Since u is the same in the 2 states a
good choice is:

o (o) _

Ay =u, =u, =-—

0
(Ag —ug)Pritg —(Ap —u )pu, =P+ P,

(Ag —ug)pgr = (A, —u )P,




Third step (HLLC)
We need to determine the remaining quantities in the two star states.
We apply the jump conditions across the left and right waves, A, Ag:

)\’LUL -F, = )\’LUL* - F;
}“RUR - Fy = )"RUR* - Fy
Thus, we obtain the pressure P* (use expression of Ay, to show that P, *=P*):

P'=P =P +p (A —u)A, —u,)

%k

*

and the other quantities: :Oa* =p, Ay — U,
)"a - )\’M
y =V,
wo=w,
e (A, -u)e, —Pu, +P A,
. Ay = Ay

where a=L or R



Fourth step (HLLC)
We need to determine the flux used to update U, and Ui. We proceed as for

HLL. " "
AF, -AF, + A A, U, -U,)

A <O0A, >0—=>F,,, =

)\'M_)\’L

AFE, —AF,+A A, (U, -U,)

Ap >0,A, <O—F,  =2RF M;L _)R; MIZR ™ R
R 'M

A >0A,>0—=F,,,-=F,
A <0,A, <O0—=F,,, . =F,
Note again the continuity of the flux since for example:
F,.—>F —F, whenA, —0

Batten et al. (1997) show that the HLLC solver is positively conservative if
the wave speeds are as indicated previously.

This solver can resolve contact discontinuities. It is therefore less diffusive
than HLL. Can we generalise it to MHD ?

Since, contrarily to HLL, HLLC uses jump conditions, generalisation is not at
all straightforward.



Problem in generalising HLLC to MHD
Gurski (2004), Linde (2002)

In the case Bx = 0, HLLC can be generalised (no Alfven wave in this case).
However, in the general case Bx is not zero and Alfven waves propagate.

The jump conditions across the 2 fast waves are not compatible with the jump
conditions across the contact discontinuity.

This leads to problems:
-the solver cannot resolve well Alfven waves and slow waves.
-attempt to improve this, leads to unphysical oscillations

The problem is that there is not enough degrees of freedom with 2 states to
describe one entropy wave and 2 Alfven waves.



The HLLD Riemann solver (MHD solver)

5 waves solver (Miyoshi & Kusano 2005):

2 fast waves, 2 Alfvén waves and 1 entropy wave. Thus, 4 intermediate states
U *, U and Ug*, Ug*.

First step (HLLD)

assumed that the normal velocity is constant over the Riemann fan, thus, the

* * Kk Kk

wave velocity of the entropy wave is )\’M =U, =U, =U, =1Uu,
Second step (HLLD)

Ay Or equivalently, u* has to be guessed. As for HLLC:

* * Fok ok (pu)* _

Ay =U, =u, =u, =u, =-—

0
(Ag —ug)Pritg — (A, —u )p u, — P + P

(Ag —ug)pg — (A, —u,)p;




Third step (HLLD)
Determine all quantities in the two star states by applying the jump conditions
across the left and right waves, A, Ag:

)\'O(UOC — FO{ = )LO(UOC* - FOC>1<
As for HLLC, the pressure P* (use expression of A, to show that P *=Pyz*):
P _p*_ pRPTL (Ag —Ug) - pLPTR (A —up)+ PP (Ag —ug)(Ay —u )y —uy)
" pR()\‘R_uR)_pL()\’L_uL)

and the other quantities:

* )\’a —Uu,
Po = Pq o~ A,
Voz* =Voz_BxB )LM _ua 2
o pa()\’a - ua)()\‘a - )\’M) _Bx
" o,(A, —u) -B° same for w and B,

B —

(A = u) (A = Ayy) =B,

o (A, —u)e,—Ppu, + PT*)\.M + Bx(\7a f?a — \7; Ea*)
“ }\’a o )\’M

where a=L or R

e




Fourth step (HLLD)
Determine some quantities in the two star states by applying the jump
conditions across the two left and right star waves, A *, Ag™

* * * * *k sk
)\'OC UOC - FOC = )\'O( UO( - FOC
* * %k Fk

Since normal velocity is constant through the fan, A, =u, =u, =u, =u,

for any wavelength such that A <A<A,, or A, <A<lg, the density and pressure

are constant (star wave are alfvén waves) . - . «
pa = lOa ’ PT = PTa

o

*

Fifth step (HLLD)
Determine the wave speed A *, Ag*. Since these are Alfvén waves, it seems
appropriate to choose: B B

X X

A=A, -

*
= U, =My, +

P P

*

Sixth step (HLLD)
Apply jump conditions through the contact discontinuity. This shows that
transverse v, w, B, and B, are constant (as expected for a contact

discontinuity). ek ek Kk * ok *k ®% *% ek
Ny =v.B " =B"w, =w",B. " =B

a Ya



Seventh step (HLLD)
Determine,v™,w”, B, ", B,”

For this purpose, use conservation within the volume of control as for HLL
but with 5 waves instead of 2.

A =AU, + (A, =AU, + (A, =AU, + (A, =AU, =AU, + AU,
-F, + F, =0

This leads to:

v APV, +A Ve + (B;R —B;L )sign(B))

y =
\/EByL+\/gB + (v, —v,)sign(B,)
Vpr + Pk




Eighth step (HLLD):
Now compute the flux by using volume of control centered on X=0.
Since more star states, flux are slightly more complex than with HLL.

F =F +AU, -U,)if A, >0
F'=F +AU, -U)+A, (U, -U)if A, <0<A4,

The flux is then: )\’L >0 — FHLLD _ FL

A <O<)\.L* —F ., =F
)\.L* <0<A, =F,,,,=F,
Ay <O<)»R* —F, .,=F
)»R* <0<A, = F,,, =FR*
Ap <O = Fppyp = Fy

*

kek

ke



Final remarks about HLLD:

The solver can resolve exactly isolated discontinuities including rotational
discontinuities (Alfvén waves) and shocks.

As expected it does not resolve well slow magneto-accoustic waves.

Miyoshi & Kusano show that it preserves positivity.

It is a non-linear relatively accurate and robust solver.
=> Tends to be widely used.



HIGH ORDER SCHEMES

accuracy versus stability

The MUSCL-Hancock scheme

The Monotonic Upstream Centred
Scheme
for Conservation Laws



So far, the method was first order since each cell is described by a constant
value. First order methods are very diffusive.

How to increase the order of the method ?

Replace the uniform state by a gradient u g @ @ ut |
|

=> increase the order of the method. | —@- |
un.

Necessary to compute: u",  =u",_;,, and u" g=uU", 4,

It is necessary also, to be in second order in times to compute these values
a time t+1/2At

un o UL

w2 Lop™ R /./, uni+1
Fi+1/2 =_fn F(U(Xi+1/2,t))dt un_ un_ D

AtV i,L /. \L

- P T

U™ "L

un+1/2:

The Muscl-Handock scheme

o

X

i+1




The predictor states are calculated using Taylor expansion:

At ( oU Ax ( oU

U, =+ S22 (Y
’ ot ), 2 \ox),

At Ax (oU

Ui, =+ 2 ) (Y

’ ot ). 2\ ox

I i

The time derivative is estimated by calculating the fluxes at time t".

The space derivatives are computed using the neighbours (but some
difficulties will appear soon...).

Summary of the scheme:

-compute the boundary extrapolated values
-evolve them at time At/2
-solve the Riemann fluxes

-update the variables using the fluxes



Problem with the reconstruction:
High order (>2) linear methods are not monotone (Godunov theorem)

=>Spurious numerical oscillations and instabilities in the vicinity of
gradients.

This implies that the slope must be adequately chosen. In particular, it
must satisfy the TVD (Total Variation Diminishing) constraint.

0

Total Variation: TV (u) = f_o;‘u'(x)‘dx = TV(u,) = 2

[=—00

n n
U, — U,

l




3 5

3 y

g\»\ Zg\
O




Solution: use non-linear slope (slope limiter)

Generally speaking, we have: Uni,R @ @ uni,L

| |
u,, =Uu; +§ iUip = U, _E i u

Many slopes A, can be constructed.

n n n n n n
Ai,L =U; — ui—l’Ai,R = Ui — U, ’Ai,C = (U — ;)12

i+1
Ai=fA LA RAC)
A very useful, widely used choice is the MINMOD slope:
A, >0, A, =max[0,min(A,,,A, ;)]
A, <0, A,=min[0,max(A,,,A, ;)]

Robust but diffusive (i.e. not very accurate)

In general, slopes are an important issue. Better to test various choices.



TESTING the SCHEME

Importance of code testing cannot be over-
emphasized...



Have we wasted our time ?
Inacurate Jump

Rarefaction shock conditions
s Zeus Riemann solver

e

o lane Bxusct FK—)(—K—)(—)(—)(—)(—K—)(—)(—X—)(—%—X—)(—X—X—)VX-X

hHF
. + Zans ghin=(125
i 04 - |
¥ Zengylin=0Ln |
211 e oo ¢ 1 1 1 Iz Line Daact |
12010 1401 16041 180 21XE0 e R S
j . og =+ Zs |
+
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A
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Riemann solver
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12400 110010 161041 THi 2IXE0

Falle 2002

Maybe not...



1D Tests for MHD

The non-linear circularly polarized Alfvén wave

(e.g. Fromang et al. 2006)

This is an exact and explicit solution
of MHD equation

=>very convenient to test the codes

Can be written as:

B =cst,V_=0,
V,=AxV, cos(wr - kx),
B = Ax B, cos(wt - kx),
V.= AxV_ sin(wf - kx),
B = Ax B sin(wt - kx),
)

—=V
k

wave amplituda

"""""""""
------------

......
__________
"""""""""""

time (eods unfte)



1D Tests for MHD: Shock tube tests
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Fig. 5. Results of one-dimensional shock tube test  with  the  initial  left states (p.puve.w 8.8} =
{1.08.0.95. 1.2.0.01.0.5. 3.6/+4x. 2/v/Ax}. the ripht states (1. 1.0.0.0.4/3/ax. 2/2x}, and B, = 4/vax. Numerical selutions of the

HLL for the Other waves HLL solver, the HLLD solver. and the Roe scheme are plotted at ¢ = 0.2, (Top left} p, {middle left} v, {middle right) w. {bottom left} 8.

(bottem right} 8., {tep middle} p around the left fast shack, {top right} p areund the left slow shock are shovin.




1D Tests for MHD: Shock tube tests

Influence of the
scheme order

HLLD first and
second order

HLLC first and
second order
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Fig. 7. Results of one-dimensional shack tube test w#ith the same initial states as in Fig. 5. Numerical selutiens of the first- and second-
order HLLC-type solver by Li {Ist- and 2nd-HLLC-L}{19). the first- and second-order HLLD selver {Ist- and 2nd-HLL D} are plotted
at +=0.2 (Top left} v, (top right} w. (bottom left} 8, (bottom right} 8, are shown wvithin —0.02 < v < 0.1,



2D Tests for MHD: Orszag-Tang vortex test

2 T. Mivosii, K. Kusano ! Sournal of Canputational Plivsios 208 (2iN15) 315-344

Famous 2D
tests 5

4]

p = vk,
v = (=sin2my,sin2mx), 3
B = (-B,sin2mx,sin4my)
2
5 5 1
=—,P =—,B =
P T T Vax

0 8] . .
Q 1 2 3 Q 1 2 3 Q 1 2 3 0 1 2 3

1 Fig. 12. Gray-scale imapes of the temperature distribution in the QOr2ap-Tang vortex problem at ¢ = & for {left to right) the HLL
COm parlson solver, the HLLD selver, the Roe scheme at & = 200, and the reference selution. The left half of the demain is shovin.
between HLL,

HLLD and 20
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Fig. 13. One-dimensional temperature distribution in the same problem as in Fig. 12 aleng {left} » = 0.6d=. {right} r = x. for the HLL
solver, the HLLD solver, and the Roe scheme. The solid line shovx the reference selutien in cach panel.



An exemple of a 3D calculation:
Collapse of a prestellar dense core with Lax-Friedrich solver

Lo L4831 (Mreefal] time) Lo L4938 (Ireefal] time)

-2

LR LR
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© © 2
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0.00

15
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Fig.13. Two timesteps illustrating the magoetized collapse. The npper panels display the equatorial density and velocity field
whereas bottomn panels displays the density in x —: plan. The calculation is pecformed with the Lax-Friedrich solver.



An exemple of a 3D calculation:
Collapse of a prestellar dense core with Roe solver

t= 14493 (Trectall time) t= 14098 (Trecdal]l time)

000 004
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Lo 14493 (Irectall time)
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Fig.14. Same as Fig. 13 except that the calcnlation has been carried ont with the Roe solver.



MultiD-MHD



Specificity of the multiD MHD equations
In multidimensionnal problems, the induction equation presents qualitatively
new features. Let us remember that the two following equations must be

satisfied: &tl§+§x(l§x‘7)=0
VB=0
et us consider a surface S. Stokes theorem leads to:
ff&t§d§+ff§x(l§x‘7))d§=0
d,p+PBxV)dl =0

which is qualitatively different from mass, energy that are volume conserved...
The magnetic flux is defined on a surface rather than on a volume
=> apparently difficulty to reconcile with Godunov-type methods.

If div B, vanishes initially, induction equation ensures that it remains 0.
V.(0B+Vx(BxV))=0
= 3(VB)=0

BUT: the numerical scheme, usually, will not ensure that this is the case.



Why worrying about div B=0 ?
(e.g. Brackbill & Barnes 1980, Toth 2000).
In numerical approaches, all quantities are always represented approximately, so
why should we worry about div B being none zero as long as it remains small ?
The problem appears to be fundamental. Indeed, MHD equations on the
conservative can be rewritten as:

d9,(oV)+V(pVV -BB+ P, I)=-V BB

0, E +V.((E+P)V -B(BV))=-V.B(V.B)

Thus, if div B is not vanishing, the equations written on the conservative form are
not equivalent to the standard fluid equations. In particular, we see that a force
along the field lines is now applying.

Long time integration can then be a worry. Equilibrium solutions can be modified.
For example Brackbill & Barnes report problems with integration of a uniform low
beta plasma. After several crossing times, non zero flow velocities develop
spontaneously and distord the field lines. The problem may be less severe if we
use non conservative form of the MHD equations but then the nice properties of
Godunov type schemes are lost.

The common experience is that non div B preserving schemes are very
unstable and lead to code crashes.



Potential vector methods
(e.g. Dorfi 1986, Evans & Hawley 1988). B is volume centered.

—

Vector potential defined by: VxA=B
Thus:V B = 6(6 X A) =0

div B is therefore 0 exactly. On the other hand, the Lorentz force becomes:
jx§=(§x§)xl§=(§x(§xﬁ))x(§x;\)

Therefore, the Lorentz force entails second order derivatives which leads to less

accurate results. Norman et al. (1987) argue that third order schemes should be
used in order to provide first-order accuracy for the Lorentz force.

In particular, in the vicinity of sudden changes in the characteristic length scale,
truncation errors become very important leading to unphysical current and forces.
The second order scheme makes the problem even more severe.



Powell’ s methods
(e.g. Powell et al. 1999, Toth 2000). B is volume centered.

Main idea is to solve the equations on conservative form but keeping the div B
terms as source terms:

JU+VF =S

S =(0,-V.BB,-V Bii,-V B(ii.B))

Advantage: fundamental properties are preserved (e.g. Galilean invariance)

Disadvantage: equations not conservative therefore shock conditions are not
satisfied.

Since B, is not constant, the 1D problem presents now eight waves instead of
seven.

A Roe-type solver is developed which propagates the eight waves.

The method works but leads sometimes to inaccurate jump relations.
See comparison in the test part (Toth 2000).



Projection methods
(e.g. Brackbill & Barnes 1980, Toth 2000, Crockett et al. 2005). B is volume centered.

Main idea: after having updated the magnetic field, calculate a correction which will
ensure that div B=0.

Let us consider the Poisson equation: Ap+VB=0—>B=B+V¢
The new field B’ is divergenceless. —VB=V.(B+ 6(/5) ~0
Note that It can be shown that for a cartesian grid this corresponds to the closest field

which satisfy div B=0 (Toth 2000).

Similar method is sometimes used in incompressible hydrodynamical studies to
enforce div V =0.

Advantages of the method:

-can be combined with any scheme
-B is volume centered (simple).



Disadvantages of the method:

-problem with energy conservation. Since B changes but not E, it implies that e is
changing (can sometimes become negative).

-it is possible to recalculate the total energy to enforce conservation of internal
energy, but then total energy is not conserved any more.

-the magnetic flux is not conserved. Problem may arise near discontinuities
where large values of div B will be generated and where the conservation
properties are essential to insure jump relations.

-a Poisson equation must be solved. Extra efforts and cpu costs. Possible
problems may arise due to boundaries depending on the Poisson solver.

In practice however, the scheme seems to work well for a large set of problems
and tends to be widely used (see the comparisons in the test part).

An extension has been proposed by Dedner et al. (2002) who develop hyperbolic
(instead of elliptic) divergence cleaning.



Constrained transport methods
(e.g. Evans & Hawley 1988, Toth 2000). B is face centered.

[[o.BdS+ [[Vx(BxV))dS=0

3,9+ PBxV)dl =0

Induction equation suggests that the relevant quantity (analogous to density) is
the flux, that is the integral of the magnetic field on a surface.

It also suggests that the flux should be updated by performing some circulation
on a close circuit.

Thus, magnetic field should be defined in the center of the face, the mesh is

staggered.

by,i,j+1/2
- 1 Yis1/2%i+1/2 ' ' '
T bx’i_l/z’j’k(t) - AyAZ f)’i—l/z,zi_uz dy dZ bX(t’Xi_l/z,y . )
V, R 1 Xis1/25%i+1/2
b .. 1) = A dZ b (8X Y T
bX |'1/2J - >T<p bX,i+1/2,j y’l’J_l/z’k( ) AxAz fxi—l/27zi—1/2 y( yj_l/z )
in 3D
by,i,j-1/2




CT: The electric field

(e.g. Evans & Hawley 1988, Toth 2000). B is face centered.

Circulation around the faces must be performed integrating the electromotor
field: VxB, located at the edges of the cells.

B, i ke1r2
| E \is12)ke172
L 2 /
Xéi’yj"zk E 2,i+1/2,j+1/2,k
Ab/‘ Dy i+1/2,

E Y,i+1/2,j,k-1/2




The equivalent of the volume averaged quantities and surface
averaged flux used in Godunov type scheme is:

At — At — _

xz 1/2,], k(At) xz 1/2,], k(O) t Ay ( 2i-1/2,j+1/2k — Ez,i—1/2,j—1/2,k) - A_Z( y,i-1/2,jk+1/2 Ey,i—l/Z,j,k—1/2)

At — — At —
y i,j=1/2 k(At) y i,j— 1/2k(0) L Az (Ex,i,j—l/2,k+1/2 - Ex,i,j—1/2,k—1/2) - E(Ez,i+1/2,j—1/2,k - Ez,i—l/2,j—1/2,k)

At — — At

z i,j.k- 1/2(At) z i,j.k— 1/2(0) + Ax( yi+l/2,j k=112 Ey,i—1/2,j,k—l/2) - A—y( X, j+1/2k=1/2 — Ex,i,j—1/2,k—1/2)

p— 1 At i+1/2

L itngn = AfAx f dt f » dx E. (XY 1/2:%172)

— 1 Yi+1/2

Ex,i—l/Z,j,k—l/Z AtAy f dt - dy Ey(xi—l/Z’yaZk—l/Z)
i

- 1 Zk+1/2

Ez,i—l/2,j—1/2,k ArAz f dt - dz E_(x,_ 125 j- 1/2+2)

As for volume averaged quantities, these expressions are exact but again
approximations will be made in calculating the flux, E.



CT: Exact nullity of div B

+

+

Ei-1/2,j+1/2

Ei+1/2,j+1/2

(p

G

v

)  +

v

Ei-1/2,j-1/2
+



CT: Exact nullity of div B

(e.g. Evans & Hawley 1988, Toth 2000).
With these definitions, the volume centered divergence vanishes exactly if it vanishes
initially. This is shown as followed:

divb(At) =
xz+1/2]k(At) X,i— 1/2jk(At) by11+1/2k(At) Vi, j— 1/2k(At) bzz]k+1/2(At) Z,0, J k- 1/2(At)
Ax Ay AZ
_ x1+1/2]k(0) X,i— 1/2]k(0) byl]+l/2k(0) Vi, j— 1/2k(0) bzl]k+1/2(0) 2,0, j k= 1/2(0)
Ax Ay Az
At — — At

AxAy (Ez,i+1/2,j+1/2,k - Ez,i+1/2,j—l/2,k) - AxAz (Ey,i+1/2,j,k+1/2 - Ey,i+1/2,j,k—1/2) - (l +1/2<>i- 1/2)

At = — At = —
——(E . . -FE .. -——(E._..., . -E . . .. —(j+1/2<=j-1/2
AyAZ ( X0, j+1/2,k+1/2 x,l,]+1/2,k—1/2) Ay ! ( Z,i+1/2,j+1/2 .k z,1—1/2,]+1/2,k) (J ] )

At — — At — —
AzAx (Ey,i+1/2,j,k+1/2 - Ey,i—1/2,j,k+1/2) - FAy(Ex,i,j+1/2,k+1/2 - Ex,i,j—1/2,k+1/2) - (k +1/2< k- 1/2)

=divb(0)+0=0



Advantage of constrained transport method:

-div B vanishes to machine accuracy
-clear formulation of the average magnetic field and magnetic flux
-for some aspects, method well suited to Godunov type approaches

In particular the B, component is already defined on the face where it is
needed to calculate the flux.

Disadvantage of the method:

-calculating the electric field is NOT straighforward (as we will see...)
-extra calculations and extra CPU costs

-for some other aspects, method not well suited to Godunov type approach
B, component is not defined where it is needed.



Calculating the electric field: method of characteristic
(e.g. Evans & Hawley 1988, Stone & Norman 1992).

MOC: introduced by Evans & Hawley (velocity centered and B is staggered)
MOC-CT: introduced by Stone & Norman and used in ZEUS (V and B

staggered).

The problem is that any electric field will ensure div B=0 as long as the CT
method is used BUT stability is not ensured. Some upwinding is therefore
necessary.

Evans & Hawley simply interpolate the velocity field. They use upstream
interpolation (which insures stability, following approximately the
characteristic) to compute the components of B.

Stone & Norman find that this method does not provide good description of
the shear Alfvén waves. They take advantage of V and B being located at the
same place in ZEUS and proceed as follows:

-ignoring compressibility é,tv _ ié, B —udv
(discarding fast and slow waves), one can write 0 R X

JB,=BJdv—-udB,



o"v+u&v=L 0B L
Thus: f : @@x @

é’B +u&B + xa”B)

0B,

<’

= at(v 1%) +(u=x va)o"x(v 1%

This implies that v+/-B,/p'2 follows the characteristics with velocity u+/-B,/p'? and
are therefore invariant along them.

n+l/2 n n+l/2 n
(vi+1/2,j+1/2 o Vi+1/2,+) (By i+1/2 ]+1/2 y,i+1/2,+)/ IO+ = O

n+l/2 n n+l/2 n
(Vi+1/2,j+1/2 _Vi+1/2,—) (B J+1/2 ]+1/2 y,i+1/2,—)/ \ p— =O

Thus one needs to determine v,, B, and v_, B.. n+l/2
i+1/2,j+1/2
This is achieved by tracking back the two “Bn+1/2
t i+1/2,j+1/2
characteristics as shown in the
n
. V. n
graph_ »h i+1/2,+ Vi+1/2,— "
i+1/2,j Bn + - i+1/2,j+1
n
B’ i+1/2,+ Bi+1/2,—
l+1/2_] 7'y <& ® ¢ l+1/2,]+1




Calculating the electric field: field interpolation
(Dai & Woodward 1998, Toth 2000 ).

|dea: estimate the electric field by interpolating the velocity and magnetic field
variables

Dai & Woodward interpolate the variables and proceed as follows:

-at time t, the staggered field b, ;.15 byj.1/2 » IS known.

-simple average gives the centered magnetic field: B, ;; =1/2(b,; 12; + Dy js112; )-
-solve the 4 (6 in 3D) Riemann problems leading to new centered magnetic field B
-obtain estimated edge centered magnetic and velocity field through:

Hn+l 1 Hn+l Hn+l pn+l Hn+l =n+l 1 =n+l =n+l =n+l =n+l
Bi+1/2,j+1/2 - Z(Bi,j + Bi+1,j + Bi,j+1 + Bi+1,j+1)’ ui+1/2,j+1/2 - Z(ui,j + ui+1,j + ui,j+1 + ui+1,j+1)
¥ pn+l Hn =% 1 =n+l =n

Bi+1/2,j+1/2 - E(Bi+1/2,j+l/2 + Bi+1/2,j+1/2)’ ui+1/2,j+1/2 - E(ui+1/2,j+l/2 + ui+1/2,j+1/2)

—

j— £ — 3k
Ei+1/2,j+1/2 = E(Bi+l/2,j+1/2’ui+1/2,j+1/2)

-finally compute new b (face centered magnetic field) by CT method.

Preserve div B=0 but no upwinding => likely unstable



Calculating the electric field: flux interpolation
(Ryu et al. 1999, Balsara & Spicer 1999, Toth 2000, Ziegler 2005 ).

|dea: estimate the electric field by interpolating the fluxes computed at the face
center

Balsara & Spicer interpolate proceed as follows:

-at time t, the staggered field b, ;.15  Dy;j1/2 » 1S known

-solve the 4 Riemann problems gives 4 fluxes at the face center
-obtain the electric field at the edge (along z) by simple flux averaging

with d.U + d F + 07yG =0,
F,=-E., G,=E_

n+l1/2 1 n+l/2 n+l/2 n+l1/2 n+l/2
Ei+1/2,j+1/2 = Z(G6,i+1/2,j + G6,i—1/2,j - F7,i,j+1/2 - F7,i,j—1/2)

-finally compute new b (face centered magnetic field) by CT method.

However, with this formulation the flux of a 1D problem calculated with a 2D code
is not identical to the flux obtained with a 1D code. Ryu et al. (1999) present a
slightly different formulation which has this property.

Preserve div B=0 but no « proper » upwinding => likely unstable
(some upwinding in flux calculations)



Calculating the electric field: 2D Riemann solver
(Londrillo & Del Zana 2000, 04, Gardiner & Stone 2005, Fromang et al. 2006).

Most recently, it has been realized that electric field should be upwinded in a
similar way than in the cell centered formulation. Formally, the problem can be
thought as a 2D Riemann problem. That is 4 states are now interacting instead
of 2. Proper flux estimate can be performed following this line, ensuring stability.

Londrillo & Del Zana and Fromang et al. proceed as follow:
-consider a linear solver (like Roe solver) U U
-in the 1D case, the flux is: LR RR

-a natural 2D generalisation of this is: ULL URL

~

A

~

(/31' _&i)f{i

|
FU0)) = Z(FLL + Fp + Fp + Frp) +
1 ~ g s 1 o~ ~ =
Ezzel,m (ﬁx,i - ax,i)Kx B 52i=1,m (/Sy,i B ay’i)Ky
1

where the 2 Roe matrix are ;ﬁ;f{; T, = l(ULL v U DT o =—(Uyy +Up)
constructred by considering: T2 2

1 1
FUO) = (F +F)+ - Y,

i
i=1,m

~
~

)\’x,i )\'y,i

i Si 7T 1 — 1
)\’y’Ky —> Uy,L =5(ULL + URL)’Uy,R =E(ULR + URR)



Calculating the electric field: 2D Riemann solver
(Londrillo & Del Zana 2004).

For non linear solver, like HLL, there is no systematic way of generalising the solver
and this can be tricky.

For HLL, a natural generalisation can be obtained (Londrillo & Del Zana, 2004). It takes
advantage of the staggered mesh and assume that the problem entails only 4 waves

by taking e.g. A, g=max(A, g Ay rR)-

E s __B}’R Err AL AR
T T
' ' I3
Byr |, Byr a
E Pl ErL &0

E* _ )\’x,R}\’y,RELL + )\‘x,L)\'y,LERR - )\’y,R)\’x,LERL - }\’y,L}\’x,RELR

()\‘x,R - )\'x,L)()\'y,R - )\'y,L)
A A
_ v.L”"y,R (BX’R _ Bx’L) + ;LX,L;\'X,R (By’R _ By’L)
)”y,R B Ay,L )\’x,R - )\’x,L



Calculating the electric field: 2D Riemann solver
(Gardiner & Stone 20095).

Gardiner & Stone present another approach slightly different but not far from
the 2D solver methodology.

They transport the electric field calculated at the 4 neighbouring face center
(given by the 4 1D Riemann problems), writing:

1
zi+l/2,j+1/2 = Z(Ez,i+1/2,j + Ez,i—1/2,j + Ez,i,j+1/2 + Ez,i,j—1/2) <)<
N ?\f\/
L dy[9E, JE L dx (aEZ JE
8\ Y ianiviis O i iessa 8 \ OX irl/a sl OX is3/4.j4172 4 Ei1/2,

Then the « gradient » of the electric field are estimated with induction equation
and some upwind procedure (e.g. Lax-Friedrich solver).



Calculating the electric field: 2D Riemann solver

In all the former cases, the 1D flux is exactly recovered in the limit when the 2D flow
becomes equivalent to a 1D situation.

The solvers are all properly upwinded therefore ensuring numerical stability.

Numerical tests indicate that this approach is indeed robust and accurate.

One disadvantage is its cost since 4 (8) bidimensional Riemann solvers have to be
solved for each cell in 2D (3D).

In the same way, reconstruction must also be performed at the edge and not only in
the face center.



Reconstruction of V and B for 29 order accuracy of the
Lorentz force

b, is already in place !

Dy i 172
Dy i1/
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Dy 172, Vi el
Dy 12 T T
Vi
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Reconstruction of V and B for 29 order accuracy of the
electric field at the edge

Dy i 172
b i+ 1
+112,
Dy 172, Vi el
N ><, ] N ><
by,i,j'1/2 T T




2D tests: testing the method
Rotated shock tube test (Toth 2000), look at B, which ideally
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FIG.11. The parallel component of the magnetic field in the 2D rotated shock tube test is shown for six different
schemes. Theanalytic solution is auniform value B, =5/ ~/47 . The non-conservative 8-wave formulation is in error
by several percentage everywhere between the left and right moving fast shocks (x = 0.1 — 0.9). The conservative
schemes, including the base-scheme (middle top panel), show significant errors close to the discontinuities only.



2D tests: testing the method
Orszag-Tang

Vortex 8-wave
Toth 2000

Flux interpolation

H—-wavs flax- CT fleld—CT
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FIG. 16. The temperature distribution in the Omszag-Tang vortex problem. Only the left half of the compu-
tational domain is showrn, the other half is symmetdc. The five schemes are compared ata 100 x 100 rsolution.
The reference high resolution solution |bottom right panel) was computed on a 400 x 400 grid writh the projection



2D tests: code comparison

Orszag-Tang vortex resolution 512

Fromang et al. 2006 (Ramses) Dai & Woodwards 1998




Athena code
(Gardiner & Stone
2005)

Ortzag-Tang
Vortex

4 resolutions
64,128,256,
512




2D tests: testlng the method
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Fast rotor (Toth 2000):

Taken from Mouschovias &
Paleologou 1980, first done
by Balsara & Spicer 1999

A dense cylinder rotates
inside a diffuse medium, a
transverse magnetic field
threaded the 2-media.

Huu'
IHHJ:'
o

\H\‘

FIG.20. The Machnumber |v|/e; forthe second rotor problem in the central part of the computational doin
The seven schemes and the base scheme are compared at a 100 x 100 resolution. The reference high resolu
solution (bottom right panel) was computed on a 400 x 400 grid with the projection scheme. The 30 contourl
are shown for the Mach number ranging from 0 to 3.3.
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What is MHD ? Why MHD approximation ?
(Shu 1992, Kulsrud 2005, ...... )

In many astrophysical systems, the magnetic field is thought to play an
important, sometimes dominant role (e.g. solar coronna, solar wind,
interstellar medium, accretion disk, jets...).

MHD equations are fluid equations and require that the collisional length
must be small with respect to the size of the system considered. When this is
not true Bolzmann equation should be used but considerably more difficult.
In practice, MHD sometimes used even when this condition is not satisfied.

Even so, we should treat 2 fluids, electrons and ions: still very complex

But with four approximations, we can derive a single fluid set of equations
leading to ideal MHD equations:
-local fluid neutrality (density of posivite charges = negative charges)
-neglect the displacement current in Maxwell equations
-neglect the electrons inertia
-assume perfect conductor (no magnetic diffusivity, no Hall effect)

Non ideal, single fluid MHD may consider: resistivity, Hall terms, « ambipolar
diffusion »



