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                             Summary of the lecture 
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 -MHD equations, standard and conservative forms 
 -Godunov-type methods and Riemann problems 

         
2) Riemann solver 

 -exact hydrodynamical solver 
 -ROE solver       
 -HLL type solvers 
  

3) High order schemes 
 
4) 1D and 2D Numerical tests:  comparing the solvers 
 
5) MultiD MHD 

 -Specificity of the MultiD MHD equations 
 -the methods 

 
6) 2D Numerical tests: comparing the methods 

 



            Introduction 



Explicit methods and stability 
 
We consider the simple advection equation:  
a some constant. 
 
Let us discretize it: 
 
 
 
 
 
A possible and appealing choice is: 
 
 
 
 
 
(subscript  timestep, underscript position) 
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=>This method turns out to be unstable… 
 
Physically this is because, information is “upwind”. It  should  come only 
from the regions from which the flow is coming. Can be interpreted as a 
negative viscosity otherwise. 
 
Mathematically, this can be shown using von Neumann analysis.  
Let Fourier transform the mesh: 
 
 
 
 
 
 
 
 
 
 
Thus, the modes are amplified at each time step leading to a strong 
instability.   
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Physically, the following discretization should get rid of this problem:  
 
 
 
 
 
 
 
 
 
Let us check this mathematically: 
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Thus, the scheme is stable as long as C<1 which is called the:  
Courant condition.  
 
Physical meaning is clear: information should come from the nearest 
upwind neighbours.  
 
In the case of more complex equations entailing various wave propagation, 
information comes generally from both the left and the right neighbours, 
depending on the wave which is considered.  
 
 
Important messages: 
 
-discretization matters a lot 
 
-information should be upwind 
 
-time step is a crucial issue 
 



 MHD equations, standard and conservative forms 
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In 1D can also be written as: 

                                              

                                                       A is called the Jacobian 

                                                       Its eigenvalues are the wave 

                                                       speeds. 

In 3D, we have: 
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            Brief description of the MHD waves 
 

The 1D MHD equations have seven eigenvalues or equivalently give rise to 7 
waves. 

2 Alfvén waves: transverse mode (analogous to the vibration of  a string) 

2 slow magneto-acoustic waves (coupling between Lorentz force and thermal 
pressure, B and ρ are anticorrelated) 

2 fast magneto-acoustic waves (coupling between Lorentz force and thermal 
pressure, B and ρ are correlated) 

1 entropy wave (contact discontinuity, does not propagate) 
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λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7

The wave velocities are such that: 

 

       fast - Alfvén - slow - entropy - slow - Alfvén - fast 

Therefore, some eigenvalues may coincide depending on the 
direction and the strength of the magnetic field (whereas hydro 
case is strickly hyperbolic).  
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Wave fan: 



                           Godunov type methods 
 

Originally developed to solve compressible hydrodynamical equations (Godunov 
1959). Well suited to handdle shocks and discontinuities 

=> This is why they are so commonly used in astrophysics. No need to introduce 
viscosity to stabilize the scheme. Discontinuities resolved in few cells. 

Each computational cell represents a fluid volume with uniform density, velocity, 
energy inside the cell which represents the average values. 
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The total  mass, momentum and energy within the cells are thus 

 

 

 

 

 

 

The cells exchange flux of matter, momentum and energy between each others. 
Philosophy different from finite difference methods, in which the discrete values 
represent the exact values of the quantity at the location, or from Fourier methods. 
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The exact discretized solution of                                 is given by: 

 

                               

 

 

 

Note that: 

-this is at this stage an exact solution, in practice however the fluxes are 
approximately calculated 

-even if the fluxes are not correct, the method, by construction, conserves 
mass, momentum and energy exactly since the amount retrieve from one cell 
is exactly given to its neighbour 

- this expression does not entail derivative but flux differences, this is why, 
discontinuities are well resolved. This is unlike finite difference methods or 
spectral methods.  
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                           The Riemann Problem 
 
The question with the Godunov method is thus to estimate accurately the 
fluxes exchanged between two uniform states U1 and U2. 
 
 
 
 
 
 
This is called the Riemann problem.  
 
Since no characteristic scale is involved in the problem, it is self-similar. That 
is to say the pattern at (x,t) can be deduced from the pattern at (x’,t’), U(x/
t)=U(x’/t’). Thus, the flux exchanged between the 2 states is constant in 
time. 
 
 A central problem for Godunov type methods, is to have accurate 
« Riemann solvers » which resolve the Riemann problem at interface 
between cells and provide the flux. 
 
Solving the Riemann problem for non linear equations  is in general a 
very difficult problem. 

F 

U1 U2 



RIEMANN SOLVER  

1D MHD 



          Exact hydrodynamical Riemann solver 
 

-Hydrodynamical Riemann problem entails 3 non-linear waves, 
rarefaction wave, contact discontinuity and shock 
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-Exact hydrodynamical solver is known  

 

-Need to perform several iterations  

=>Accurate but expensive  

=>Interest in having cheaper solvers 

 

 

 In MHD, no exact solver is known (would be very expensive) 

=> Need to find  approximate solvers 

 

 

                               



Solution of the Riemann Problem for linear  
hyperbolic systems 

(Toro 1999) 
Finding the solution of the Riemann problem is possible when the Jacobian A of 
the system is a constant matrix. As will be seen later, this turns out to be 
extremely useful.  
 
Let us consider the simple linear advection equation: 
The solutions are simply given by:  
 
Thus the rate of change of u along the characteristic curve dx/dt=a is zero. a is 
called the characteristic speed.  
In this case the solution of the Riemann problem is very simple: 
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Now let us consider a linear system of m variables and equations. 
 
 
Let us diagonalise A:  
 
 
 
 
 
 
 
Thus, the system is decoupled and the solution fo each Wi  is just Wi (x-λit). 
Coming back to U, we have: 
 
Let us consider again the Riemann problem, U(x,0)=UL for x<0 and UR for 
x>0 
We can write:  
 
 
For a given (x,t), there is an eigenvalue such that λI<x/t< λI+1 : 
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Thus, we have the following picture:  
 
 
 
 
 
 
The solution consists of m waves emanating from the origin.They constitute 
the wave fan.  Each wave carries a jump discontinuity.  
 
We can now estimate the flux exchanged between the cells that will be 
needed to advance the solution.  The value of U at the interface is U(0):  
 
 
 
 
Thus, we can obtain the Godunov flux: 
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An example: 
Let us consider the linearized 1D hydrodynamical equations. 
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   The ROE Riemann solver (MHD solver) 
3 waves linear solver for HD (Roe 1981, Toro 1999). 

7 waves linear solver for MHD (Brio & Wu 1988, Cargo & Gallice 1998, 
Balsara 1998). 

Complex method which requires some calculations. Only the basic ideas 
presented here.  

Solving the Riemann problem exactly is too difficult so one replaces the 
non linear problem by a linear problem that is solved exactly. 

Replace the new Jacobian, A, by a linear one which has adequate 
properties. 

 

It is required to have the following properties: 

Property (A): Hyperbolicity of  A, implying that it has m eigenvalues and  

eigenvectors. 

This preserves the linear wave structure of the original problem. 
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Property (B):  

This is called the consistency. It implies that in the limit where the right and 
left states becomes identical, the flux is exactly recovered. 

 

Property (C):  

This is the most difficult property to satisfy.   

It ensures that an isolated discontinuity which satisfies the jump relation: 

 

will be adequatly described by the solver (projected in a single eigenvector 
giving λc=λi).  

Constructing a Roe matrix is not easy. Simple averaging like 0.5(A(UR)
+A(UL)) does not verify  property (C). 

This can be achieved (Roe 1981) by introducing an intermediate vector Q. 
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By doing this, it is found that U and F express as algebraic relations (product 
QiQj or ratio Qi/Qj ) involving the components of Q.   But we have for 
example: 

 

Thus the jump relations can be expressed by the jump relation of Q: 

 

Thus, 

And the flux is given by the formula obtained previously: 

 

To summarize, the whole algorithm is:  

-compute the Roe average, involved quantities like:   

-compute the eigenvalues and eigenvectors  

-compute the wave strength (α-β) 

-compute the flux 
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Generally speaking, the Roe solver works well and gives accurate 
results. It is widely used and serves as a reference.   

 
In some rare occasions (but not so rare….), the Roe solver is 
encountering severe difficulties and crashes.This is due to the 
linearisation which is a poor approximation for highly non linear 
discontinuities encountered in stiff problems.  

 
The manifestation of this can be: 
-intermediate states with negative energy or density 
-rarefaction shocks leading to entropy violation 
 
An entropy fix or more generally a switch is needed to cure these 
events… Various possibilities have been proposed (see e.g. Toro 
1999).  

For example, one can switch to HLL using the largest and smallest 
wave speed of Roe. This replaces the 6 intermediate Roe states by a 
single star state. 



                           Shock Jump conditions 
 
Across a discontinuity (that is to say in any point), and in the  frame 
moving with it, jump conditions apply: 
  
In the laboratory frame, the discontinuity is moving at some speed λC. 
The jump relation can then be written as: 
 
 
To see this, let us consider again the equation:                             and a 
control volume [XL,XR]. A corresponding integral form on the volume of 
control is: 
 
 
 
 
 
 
 
Thus, if XL->XR, the integrals on the right hand side vanish and we 
obtain the relation. 
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   The H(arten)L(ax) (van)L(eer)  Riemann solver 
     (Harten et al. 1983, Toro 1999) 

2 waves solver (hydro and mhd):  

one retains only the 2 fastest waves (e.g. the 2 fast magneto-accoustic 
waves) and then assume that  between the 2 waves, there is a uniform 
state U*.  

Conservation laws are then used to determine U* and the flux F *.     

x UL UR 

t 
λL 

λR 
U* 



x UL, FL  UR, FR  
 

L -L λL*t λR*t 

U* 

First step (HLL) 
Let us consider a volume of control V, i.e. an area of surface S in YZ and 
delimited by -L and L in X. 
 
At time t=0, the total value of U within V is:  
 
 
At time t, the left and the right waves have reached: 
 
Thus: 
 
 
But we also have: 
 
 
Thus we obtain U*:  
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Second step (HLL) 

But what we want, is to determine F*, so the job is not finished yet 

(F(U*) is not a good solution).  Assume first that: λL<0, λR>0 

Let us consider a new volume of control, delimited by X=-L and X=0. Then we 
have: 

 

and thus: 

Note that this expression is symmetrical in R <=> L indicating that we could 
have used X=0, X=L as volume of control and find the same result. 

If now we assume that: λL>0, λR>0, that is to say the left state propagates 
faster than the fastest wave in the right direction, the same calculation shows 
that FHLL=FL. In the same way λL<0, λR<0 implies FHLL=FR 

 

 

 

 

 

 

 

€ 

S × ((L + λL t) ×UL − λL t ×U
*) = SL ×UL + (FL − F

*)t

€ 

F * = FL + λL (U
* −UL ) =

λRFL − λLFR + λLλR (UR −UL )
λR − λL

€ 

λL < 0,λR > 0→ FHLL = F * =
λRFL − λLFR + λLλR (UR −UL )

λR − λL
λL > 0,λR > 0→ FHLL = FL
λL < 0,λR < 0→ FHLL = FR

€ 

Note that : FL → F * when λL → 0



Which wave speed ?  
In principle, determining the correct wave speeds would require to solve the 
problem exactly first… Fortunately, good estimates can be made.  
 
Davis (1988) propose: 
 
 
while Einfeldt et al. (1991) propose:  
 
 
where λl and λm are respectively the smallest and largest wave speeds and λroe are 
the Roe wave speeds.  
 
Positivity of the scheme  
In the hydrodynamical case, the scheme ensures positivity that is to say, density 
and pressure remain positive (Einfeldt et al. 1991). The common experience is that 
the scheme is very robust. 
 
However, the scheme does not resolve contact discontinuities and is therefore very 
diffusive. Single-state approximation should be extended to a two or multi-state 
approximation.   
Note when λL=λR is enforced, the scheme is called Lax-Friedrich solver. 
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