Institut c le II. °
Fecherche sur les lois Vaton‘e
de Paris
ssssss
; fondamentales de
ALE SUPERIEUR!
ers

Finite volume methods for
compressible MHD

Patrick Hennebelle
Thanks to
Romain Teyssier and Sébastien Fromang



Summary of the lecture

1) Introduction
-stability
-MHD equations, standard and conservative forms
-Godunov-type methods and Riemann problems

2) Riemann solver
-exact hydrodynamical solver

-ROE solver
-HLL type solvers

3) High order schemes
4) 1D and 2D Numerical tests: comparing the solvers
5) MultiD MHD

-Specificity of the MultiD MHD equations

-the methods

6) 2D Numerical tests: comparing the methods



Introduction



Explicit methods and stability

We consider the simple advection equation: &tu + aé}xu =0

a some constant.
n+1 n+l n+1

Let us discretize it: -1 ! i+1

n n n
U,y u, Uy
A possible and appealing choice is:
n+l1 n n n
_ u, —1Uu, +aui+1_ui—1 ~0
At 2Ax

(subscript timestep, underscript position)



=>This method turns out to be unstable...

Physically this is because, information is “upwind”. It should come only
from the regions from which the flow is coming. Can be interpreted as a
negative viscosity otherwise.

Mathematically, this can be shown using von Neumann analysis.
Let Fourier transform the mesh:

U, = EAZ exp(—ikx,)
= A,’j” =A+ %(—A}j exp(-ikAx) + A} exp(ikAx))

alt
=A’(1+iCsin(kAx)),C = —

2

An+1
k| =1+ C*sin’(kAx) =1

=

k
Thus, the modes are amplified at each time step leading to a strong
instability.



Physically, the following discretization should get rid of this problem:

n+l n+l n+l
u’ l/t . n+l n n n
-1 I [+1 u't =y u, —Uu,,
a>0=— ~+a———=0
f}/z ¢ As Ax
n+l n n n
u. —U. u. . —U.
_.n f .n a<O: lA l+az+1sz=O
t
u_, U; U,

Let us check this mathematically:

U, = EAZ exp(—ikx,)
n+ n aAt n n .
= A = A + E(_Ak + A} exp(zkAx))
alt
= A (1+ C(-1+exp(ikAx))),C = —
¢ (1+C( p(ikAx))) > Ax

An+1 2
k

=

=1-2C(1-C)(1-cos(kAx))

k




Thus, the scheme is stable as long as C<1 which is called the:
Courant condition.

Physical meaning is clear: information should come from the nearest
upwind neighbours.

In the case of more complex equations entailing various wave propagation,

information comes generally from both the left and the right neighbours,
depending on the wave which is considered.

Important messages:

-discretization matters a lot
-information should be upwind

-time step is a crucial issue



MHD equations, standard and conservative forms

d.p + V.§p+ pVV =0

p(dV +VVV)=-VP+(VxB)xB

d.p + V.(pV)=0
d.(oV)+V(pVV -BB+P,I)=0

J.E+V.((E+P)V-BBV)=0
&t§+§x(l§x‘7)=0
VB=0

where



In 1D can also be written as:

JU+d F=0U+AdU=0

U =(p.pupv.ow.B,,8.. k) A is called the Jacobian
, ) |
, P ) Its eigenvalues are the wave
pu -+ P, - B,
puv - BB, speeds.
F = puw —B B,
Bu-Bv
Bu-B w
(E+ P )u-B (uB, +vB +wB))
B, =cst
In 3D, we have: oU+dF+3G+d.H=0

U = (p,pu,pv,pw,Bx,By ,B_,E)
VB=0



Brief description of the MHD waves

The 1D MHD equations have seven eigenvalues or equivalently give rise to 7
waves.

2 Alfvén waves: transverse mode (analogous to the vibration of a string)

2 slow magneto-acoustic waves (coupling between Lorentz force and thermal
pressure, B and p are anticorrelated)

2 fast magneto-acoustic waves (coupling between Lorentz force and thermal
pressure, B and p are correlated)

1 entropy wave (contact discontinuity, does not propagate)

Mg=UuzC A, =uxc, As=uxc, =u,

where

1/2

B. vp + B i\/()/p+§2)2 ~4ypB°

a \/E’Cf,s 2p




The wave velocities are such that:
Ms=AsAsAsAsA A
fast - Alfvén - slow - entropy - slow - Alfvén - fast

Therefore, some eigenvalues may coincide depending on the
direction and the strength of the magnetic field (whereas hydro
case is strickly hyperbolic).

Wave fan:




Godunov type methods

Originally developed to solve compressible hydrodynamical equations (Godunov
1959). Well suited to handdle shocks and discontinuities

=> This is why they are so commonly used in astrophysics. No need to introduce
viscosity to stabilize the scheme. Discontinuities resolved in few cells.

Each computational cell represents a fluid volume with uniform density, velocity,
energy inside the cell which represents the average values.

U.




The total mass, momentum and energy within the cells are thus

dM ., = p.dx(dydz),dP., = Pdx(dydz),dE., = E dx(dydz),
ey 1 Xiv1/2
with U .(t) = — U(t,x")Ydx' (inlD
(== "UxDax (@n1D)
Py 1 Xiv1/2Yi41/2 %i+1/2 | ' ' ' 1o .
U, ()= | dx'dy'dz'U(t,x',y',z")  (in 3D)

AXAyAZ Xi-1/2+Yi-1/2%i-1/2

The cells exchange flux of matter, momentum and energy between each others.
Philosophy different from finite difference methods, in which the discrete values
represent the exact values of the quantity at the location, or from Fourier methods.

°
u, Uit
°
® ®
X Xj+1




The exact discretized solution of d.U + d_F =0 is given by:

_ — At [ — =
U.(At)=U,0)+ E(F(x,-) - F(x,-+1))

where F(xl.) = Aitfom dt F(U(t,x,)) (in 1D)

— 1 At Yjal Tt
F..(x)= dt| " d dz F(U(t,x;,y,z)) (in 3D
w) =g oty [ ds FU(tx,.y.2) Gin 3D)

Note that:

-this is at this stage an exact solution, in practice however the fluxes are
approximately calculated

-even if the fluxes are not correct, the method, by construction, conserves
mass, momentum and energy exactly since the amount retrieve from one cell
Is exactly given to its neighbour

-this expression does not entail derivative but flux differences, this is why,
discontinuities are well resolved. This is unlike finite difference methods or
spectral methods.



The Riemann Problem

The question with the Godunov method is thus to estimate accurately the
fluxes exchanged between two uniform states U, and U,,.

This is called the Riemann problem.

Since no characteristic scale is involved in the problem, it is self-similar. That
is to say the pattern at (x,t) can be deduced from the pattern at (x’,t" ), U(x/
t)=U(x’ /t"). Thus, the flux exchanged between the 2 states is constant in
time.

A central problem for Godunov type methods, is to have accurate
« Riemann solvers » which resolve the Riemann problem at interface
between cells and provide the flux.

Solving the Riemann problem for non linear equations is in general a
very difficult problem.



RIEMANN SOLVER
1D MHD



Exact hydrodynamical Riemann solver

-Hydrodynamical Riemann problem entails 3 non-linear waves,
rarefaction wave, contact discontinuity and shock
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-Exact hydrodynamical solver is known

-Need to perform several iterations
=>Accurate but expensive

=>|nterest in having cheaper solvers

In MHD, no exact solver is known (would be very expensive)

=> Need to find approximate solvers



Solution of the Riemann Problem for linear

hyperbolic systems
(Toro 1999)
Finding the solution of the Riemann problem is possible when the Jacobian A of
the system is a constant matrix. As will be seen later, this turns out to be
extremely useful.

Let us consider the simple linear advection equation: &tu + CZO"xl/t =(
The solutions are simply given by: f(x —at)

Thus the rate of change of u along the characteristic curve dx/dt=a is zero. a is
called the characteristic speed.
In this case the solution of the Riemann problem is very simple:

t + x-at=0 x-at<0=>u=u,

o Ur x—at>0=u=u,




Now let us consider a linear system of m variables and equations.
dU+ Ad U =0,A, aconstant m x m matrix.

Let us diagonalise A: A . . . 0]
0 .
A=K'AK,A=| . . .|, K=[K",...K"], AK'=AK'
A
0 A,

W=K'U=U=KW, K'9U+K'AdU=0W +AdW =0

Thus, the system is decoupled and the solution fo each W; is just W, (x-At).
Coming back to U, we have: U(x,t)= E 1le.(x - ADHK'

Let us consider again the Riemann problem, U(x,0)=U, for x<0 and Uy for

U, = K', U, = K
We can write: L Ezel,ma’ R Ei=l,m/3 i
W.=a if x<0, W,=0.1if x>0.

For a given (x,t), there is an eigenvalue such that A <x/t< A, :
Ulx1) = Ei=l+1,m aiKi * Ei=l,] ﬁiKi



Thus, we have the following picture:

X-7\.1t=0 f X'}\'nt=0
U Ug

The solution consists of m waves emanating from the origin.They constitute
the wave fan. Each wave carries a jump discontinuity.

We can now estimate the flux exchanged between the cells that will be
needed to advance the solution. The value of U at the interface is U(0):

v() = Ei=l+1,m aiKi + 21‘:1,] ﬁiKi - Ei=1,maiKi + 21’:1,] (B - ai)Ki

[ i 1 1 . i
=U,+y  (B-a)K'=Ug-Y  (B-a)k = SWUL+U+ 52 sign(2)(B, - a)K

Thus, we can obtain the Goldunov flux: |
FUO) = AUO) = (AU )+ AU+ Y,

msign()»i)(ﬁl. —a,)AK'

(ﬁi _ai)Ki

)\‘i

1 1
=5(FL +FR)+EE

i=1l.m



Mean flux

!

Diffusive part ensuring
upwinding and code
stability



An example:

Let us consider the linearized 1D hydrodynamical equations.
U +AU_ =0,
Po

e
| |u alp, O

U, = Pr _ alK(l) + a2K<2) = q = ap, — Py, a, = ap,; + Pl
2ap, 2ap,

A=

BN [ PN 1

—d a

b

up

idem(B,R) <= (a,L)

1 1 '
. P* —(p, + Pr)——(up —u,)p,/a
U =|",|=0,K?+BK" = % 12
g E(ML-I_MR)_E(pR_IOL)a/,OO
‘IOL =1, uL =O i -

*

u

Pp =1/2,1, =0

»
»



The ROE Riemann solver (MHD solver)

3 waves linear solver for HD (Roe 1981, Toro 1999).

7/ waves linear solver for MHD (Brio & Wu 1988, Cargo & Gallice 1998,
Balsara 1998).

Complex method which requires some calculations. Only the basic ideas
presented here.

Solving the Riemann problem exactly is too difficult so one replaces the
non linear problem by a linear problem that is solved exactly.

Replace the new Jacobian, A, by a linear one which has adequate
properties.

JU+FU), =0,0U+AU_=0=9U+ AU_=0, AU, U,)

It is required to have the following properties:

Property (A): Hyperbolicity of A, implying that it has m eigenvalues and
eigenvectors. M=..=A,K,. K,

This preserves the linear wave structure of the original problem.



Property (B): AU, U) = A(U)

This is called the consistency. It implies that in the limit where the right and
left states becomes identical, the flux is exactly recovered.

Property (C): AU, U)U,-U,)=FU,)-FU,)

This is the most difficult property to satisfy.

It ensures that an isolated discontinuity which satisfies the jump relation:
by -F, =)\‘C(UR _UL)

will be adequatly described by the solver (projected in a single eigenvector

giving A_.=N\,).

Constructing a Roe matrix is not easy. Simple averaging like 0.5(A(Ug)

+A(U,)) does not verify property (C).

This can be achieved (Roe 1981) by introducing an intermediate vector Q.

U=U(Q),F =F(Q),0=+/p(Luy,w,H,B,/p,B,/p)

H-= l(E + P+ l(Bx2 +B+ BZZ))
o, 2



By doing this, it is found that U and F express as algebraic relations (product
Q,Q, or ratio Q/Q; ) involving the components of Q. But we have for

le: 0. 0)
€xampie OOz — 0.0, =AQ0,) =0,A0 -0AQ,

Thus the jump relations can be expressed by the jump relation of Q:
F,-F, =AF =CAQ, (U,-U,)=AU=BAQ

Thus, A=CB', F,-F, =AU, -U,)

And the flux is given by the formula obtained previously:

F(U(O))=%(FL+FR)+%E. (Bi—&i)f(i

i=1,m

i

To summarize, the whole algorithm is:

-compute the Roe average, involved quantities like: “’OLflL ¥ {)R a
| . By +Px

-compute the eigenvalues and eigenvectors

-compute the wave strength (a—f)

-compute the flux



Generally speaking, the Roe solver works well and gives accurate
results. It is widely used and serves as a reference.

In some rare occasions (but not so rare....), the Roe solver is
encountering severe difficulties and crashes.This is due to the
linearisation which is a poor approximation for highly non linear
discontinuities encountered in stiff problems.

The manifestation of this can be:
-intermediate states with negative energy or density
-rarefaction shocks leading to entropy violation

An entropy fix or more generally a switch is needed to cure these
events... Various possibilities have been proposed (see e.g. Toro
1999).

For example, one can switch to HLL using the largest and smallest
wave speed of Roe. This replaces the 6 intermediate Roe states by a
single star state.



Shock Jump conditions

Across a discontinuity (that is to say in any point), and in the frame
moving with it, jump conditions apply: F1 = F2

In the laboratory frame, the discontinuity is moving at some speed A.
The jump relation can then be written as:

)LcUl_Fl=)LcU2_F2

To see this, let us consider again the equation: é’tU + axF =( and a

control volume [X,Xg]. A corresponding integral form on the volume of
control is:

d px) d rxi
FU)-FU)=— | ., Utendr+— | U, n)d

dx dx x(1) X,
=—U(x(?)_,t) —-—U(x(2),,t) + J.U(x,t)dt + Jd.U(x,t)dt
UG =—-UG0),,0+ [ "UCendr+ [ a0

Thus, if X ->Xg, the integrals on the right hand side vanish and we
obtain the relation.



The H(arten)L(ax) (van)L(eer) Riemann solver
(Harten et al. 1983, Toro 1999)
2 waves solver (hydro and mhd):

one retains only the 2 fastest waves (e.g. the 2 fast magneto-accoustic

waves) and then assume that between the 2 waves, there is a uniform
state U*.

Conservation laws are then used to determine U* and the flux F *.




First step (HLL)
Let us consider a volume of control V, i.e. an area of surface S in YZ and

delimited by -L and L in X.

At time t=0, the total value of U within Vis: (Sx2L)xU,, =SxLx (U, +Uy,)

At time t, the left and the right waves have reached: X = )"L xt,X = )LR Xt

(Sx2L)x U, (1) =
Sx((L+At)xU, +(L=2A,)xU, +(=A, + A )t xU")

Thus:

But we also have: S x2L)xU,,(t)-U,,0))=(F, —F;)xt

o F -Fo+ AU AU,

Thus we obtain U*; v Ap = A,
1 M M
| | .
\ ] e
U, F U Ug, FR




Second step (HLL)
But what we want, is to determine F*, so the job is not finished yet
(F(U*) is not a good solution). Assume first that: A <0, Az>0

Let us consider a new volume of control, delimited by X=-L and X=0. Then we
have: Sx((L+A0)xU, =2, txU)=SLxU, +(F, - F')t

and thus: F =F +AU -U,)= Lt _)“LFR"' )L;L)LR(UR -U.)
R~ ‘ML

Note that this expression is symmetrical in R <=> L indicating that we could
have used X=0, X=L as volume of control and find the same resuilt.

If now we assume that: A >0, Ax>0, that is to say the left state propagates
faster than the fastest wave in the right direction, the same calculation shows
that F,,  =F,. In the same way A, <0, Azx<0 implies F;; | =Fg

AMF, -AF, + A A (U, -U,)

A <04, >0—>F, =F = Y

A >0A,>0—F,,, =F,
A <OA, <O—F,,, =F

HL R

Notethat: F, = F when A, =0



Which wave speed ?

In principle, determining the correct wave speeds would require to solve the
problem exactly first... Fortunately, good estimates can be made.

Davis (1988) propose: S, =min[A,(U,),A,(Up)]
S, =max[A (U,),A (U,)]

while Einfeldt et al. (1991) propose: S, =min[A,(U,),A,(Uy,)]
S, =max[A (U,),A (Ug,,)]

where A, and A, are respectively the smallest and largest wave speeds and A, are
the Roe wave speeds.

Positivity of the scheme

In the hydrodynamical case, the scheme ensures positivity that is to say, density
and pressure remain positive (Einfeldt et al. 1991). The common experience is that
the scheme is very robust.

However, the scheme does not resolve contact discontinuities and is therefore very
diffusive. Single-state approximation should be extended to a two or multi-state
approximation.

Note when A =\ is enforced, the scheme is called Lax-Friedrich solver.



